Impact of hypothetical radioactive releases in the Belgian inland rivers-sea continuum

By: Fiengo P. Fabricio
ffperez@sckcen.be

Deleersnijder E., Lambrechts J., Sweeck L. Vives I Batlle J.
Problem description

- The Nuclear power plant in Scheldt Estuary (Belgium)
Problem description

- The Nuclear power plant in Scheldt Estuary (Belgium)
The Scheldt Estuary is one of the largest European estuaries and internationally **Important nature area. Entrance to the port of Antwerp**
Objectives of the research

- Development of estuarine model for the simulation of the fate and transport of radioactive effluents as consequence of accidental releases
- Scenario definition based on the predictions of source term of NOODPLAN –Belgium
- Definition of possible release moments in order to include the influence of the tides in the transport
- Multiple partition coefficient scenario definition
- Estimation of the radiation dose rates to the aquatic biota
Model selection

- Boundary conditions problem
- Computation time problem
- Integration of the River-Estuary-Coastal systems (1D-2D) systems

Structured grid: Limits the extension of the model due to large number of cells (around 500 000 cells)
Model selection

- Boundary conditions problem
Model selection

- Boundary conditions problem
- Computation time problem
- Integration of the River-Estuary-Coastal systems (1D-2D) systems

Unstructured grid: Allows to extend model without loss of detail (around 30 000 cells)
Model selection

Integration of the River-Estuary-Coastal systems (1D-2D) systems
Model selection

- SLIM model

Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM)
Institute of Mechanics, Materials and Civil Engineering (IMMC) & Earth and Life Institute (ELI) Université catholique de Louvain (Deleersnijders E., Lambrecchts J., Gourgue O., de Brye B.)
https://sites.uclouvain.be/slim/
General overview of the radioactive plume
Source term:

Based on the estimated total release inside the reactor building Doel 1 to 4

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Fraction</th>
<th>131I MBq</th>
<th>137Cs MBq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>2.0E-08</td>
<td>2.0E+03</td>
<td>2.0E+03</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>2.0E-07</td>
<td>2.0E+04</td>
<td>2.0E+04</td>
</tr>
<tr>
<td>Scenario 3</td>
<td>2.0E-06</td>
<td>2.0E+05</td>
<td>2.0E+05</td>
</tr>
<tr>
<td>Scenario 4</td>
<td>2.0E-05</td>
<td>2.0E+06</td>
<td>2.0E+06</td>
</tr>
<tr>
<td>Scenario 5</td>
<td>2.0E-04</td>
<td>2.0E+07</td>
<td>2.0E+07</td>
</tr>
<tr>
<td>Scenario 6</td>
<td>2.0E-03</td>
<td>2.0E+08</td>
<td>2.0E+08</td>
</tr>
<tr>
<td>Scenario 7</td>
<td>2.0E-02</td>
<td>2.0E+09</td>
<td>2.0E+09</td>
</tr>
<tr>
<td>Scenario 8</td>
<td>2.0E-01</td>
<td>2.0E+10</td>
<td>2.0E+10</td>
</tr>
<tr>
<td>Scenario 9</td>
<td>2.0E+00</td>
<td>2.0E+11</td>
<td>2.0E+11</td>
</tr>
</tbody>
</table>
Scenario description

- Partition Coefficient: Based on values of ERICA Tool

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Fraction</th>
<th>131I L/kg</th>
<th>137Cs L/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Kd</td>
<td>1.E-01</td>
<td>1.E+01</td>
<td>1.E+03</td>
</tr>
<tr>
<td>High Kd</td>
<td>1.E+01</td>
<td>1.E+03</td>
<td>1.E+05</td>
</tr>
</tbody>
</table>

- Discharge time: **24hr.**
Scenario description

[Image: Satellite map of the region with landmarks labeled, including Westkapelle, Vlissingen, Rijsehem, Breskens, Hansweert, Waarde, Paal, Bath, Zandvlietsluis, Deurganckdok, Doel, and Antwerpen.]
Scenario ^{137}Cs

- Longitudinal profile

Release time
Scenario 137Cs

- Longitudinal profile

![Diagram showing longitudinal profile with two graphs, one for Low Kd scenario and one for High Kd scenario.](image-url)
Scenario 131I

- Longitudinal profile

Low Kd scenario

High Kd scenario
Time of arrival

![Graph showing arrival time vs. discharge delay with different locations marked on the map.](image)
Dose to biota-Doel Low Kd

Computed with D-DAT model

© 2017 SCK•CEN
Dose to biota-Doel High Kd

Computed with D-DAT model
Dose to biota-Vlissingen Low Kd

Computed with D-DAT model

Dose to biota

- The dose estimation was done based on the assumption of stationary biota. However it can be improved by coupling the model with a Particle tracking model.
Dose to biota

Computed with D-DAT model
Dose to biota-Particle tracking

Starting point
Dose to biota-Particle tracking
DSS tool Development
Conclusions

- SLIM-RN model has the required flexibility for fast impact assessments
- The Partition coefficient shows an important effect on the magnitude of the activity in the water column
- The influence of the tides on the RN distribution is stronger near the discharge point but it reduces at the mouth of the estuary
- The zone with the highest activity remains around ±10 km from the discharge point
- This studies tries to bridge the gap between research model and assessment tool
Thank you very much for your attention
PLEASE NOTE!
This presentation contains data, information and formats for dedicated use only and may not be communicated, copied, reproduced, distributed or cited without the explicit written permission of SCK•CEN.
If this explicit written permission has been obtained, please reference the author, followed by 'by courtesy of SCK•CEN'.
Any infringement to this rule is illegal and entitles to claim damages from the infringer, without prejudice to any other right in case of granting a patent or registration in the field of intellectual property.

SCK•CEN
Studiecentrum voor Kernenergie
Centre d’Etude de l’Energie Nucléaire
Belgian Nuclear Research Centre
Stichting van Openbaar Nut
Fondation d’Utilité Publique
Foundation of Public Utility
Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSELS
Operational Office: Boeretang 200 – BE-2400 MOL